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A B S T R A C T   

Biomedical cobalt-chromium-molybdenum alloys (CoCrMo) are frequently used for orthopedic implant and 
dental materials exposed to mechanical stressors, such as wear and cyclic load. Due to the high demand for 
customizable implant shapes, these alloys are increasingly manufactured by additive manufacturing methods 
such as laser powder bed fusion (LPBF). LPBF results in different microstructures and surface roughness as a 
function of the building direction. This study investigated the corrosion resistance, bioactivity, biocompatibility, 
and microstructure of LPBF CoCrMo (low carbon content, heat-treated) in the XY (perpendicular) and XZ 
(parallel) plane of the building direction for as-printed (as-received) and abraded surfaces. A distinct micro-
structure and different surface roughness were found for the XY and XZ planes. The as-received XY surface 
showed the lowest corrosion resistance but was still passive in phosphate-buffered saline (PBS, pH 7.4). As- 
received surfaces were less corrosion-resistant than abraded surfaces. All specimens exhibited lower corrosion 
resistance in PBS containing citric acid at pH 7.4 than in PBS and citric acid alone. As-received surfaces showed 
better hydroxyapatite precipitation and cell viability; however, all surfaces had satisfactory biocompatibility and 
bioactivity. This study showed that the building direction had a minor effect on the corrosion of LPBF CoCrMo.   

1. Introduction 

The demand for high-performance orthopedic biomaterials has 
grown dramatically in the last decades, driven by the rise in the geriatric 
population, rising bone diseases, and improving living standards [1]. 
Ceramic and metallic biomaterials exhibit strength, toughness, modulus, 
and fracture and fatigue resistance [2]. Still, some challenges of ortho-
pedic and dental biomaterials are improving the bio-functionality and 
reducing the relatively high manufacturing costs [3]. Additive 
manufacturing (AM) has recently become a key technology to overcome 
these challenges. Also, due to its greater customizability, speed, and 

accuracy, additive manufacturing attracted increasing attention for in-
dustrial manufacturing of metallic implants [4,5]. 

Among different metallic biomaterials, cobalt-chromium- 
molybdenum (CoCrMo) alloys offer unique mechanical properties and 
low wear and corrosion rates [6]. These implant materials are conven-
tionally produced by casting and forging processes. In recent years, AM 
technologies, including Laser Powder Bed Fusion (LPBF), have made 
significant progress in manufacturing hip, knee, and spinal implant 
applications [7–9]. The fabrication of customized implants by AM 
technology can address some key challenges, such as the design of im-
plants that are a mismatch between the joint prosthesis and bone, 
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non-physiological load bearing, and unsatisfactory osteointegration 
[10]. However, components manufactured by LPBF are characterized by 
non-equilibrium physical, metallurgical and chemical properties. The 
formation of porosity, high residual stresses and defects are some of the 
main challenges associated with LPBF CoCrMo [11]. The corrosion 
behavior is another critical issue since the release of Co and Cr ions and 
the formation of corrosion products cause adverse health effects [12, 
13]. Also, it has been reported that metal ion release associated with 
wear and corrosion [14,15] plays a vital role in the biocompatibility of 
CoCrMo alloys [8]. 

Various investigations focused on the corrosion aspects of CoCrMo 
alloys fabricated by AM methods. Hedberg et al. [16] investigated the 
corrosion behavior of LPBF CoCrMo compared with its cast counterpart 
and reported superior behavior of the LPBF alloy. A study on laser 
metal-deposited CoCrMo indicated that the formation of fine grains and 
a low extent of Mo segregation could improve corrosion resistance [17]. 
Also, the content and distribution of precipitates have been reported to 
influence the corrosion resistance of LPBF CoCrMoW alloy [18]. In 
another study on the corrosion of LPBF CoCrMo, it was stated that the 
plane parallel to the build direction (XZ plane) released more metal ions 
than those in the XY plane [19]. 

In addition to the AM microstructure aspects, the surface roughness 
of the AM metallic specimens is a decisive factor influencing their 
corrosion properties and biocompatibility [20,21]. This study aimed to 
investigate the corrosion resistance, bioactivity, biocompatibility, and 
microstructure of LPBF CoCrMo (low carbon content) in the XY and XZ 
plane of the building direction for as-printed and abraded surfaces. To 
simulate a physiological environment, citric acid was added to 
phosphate-buffered saline (PBS) at pH 7.4. It has previously been shown 
that citric acid species are strongly metal complexing agents at neutral 
pH [22,23] and induce similar metal release and corrosion as protein 
environments [24,25]. For reference, PBS without citric acid and citric 
acid without a buffer are also included in this study. 

2. Materials and methods 

2.1. Sample fabrication and characterization 

The alloy in this study was fabricated from an inert gas-atomized 
powder (chemical composition in Table 1) and purchased from 
Renishaw, UK, with a mean particle size of approximately 15–45 µm. 
Rectangular alloy specimens (15 mm × 15 mm × 2 mm) were fabricated 
by the LPBF method using optimized industrial parameters for fully 
dense specimens and a Renishaw AM400 Selective Laser Melting System 
(ADEISS, London, Canada). Two types of specimens were fabricated; one 
placed parallel and the other perpendicular to the building direction, 
denoted as XZ and XY, respectively. The processing parameters are listed 
in Table 2 and one layer was rotated 67◦ to the previous layer. After 
fabrication, these specimens were heat treated with a particular route as 
follows: (1) the specimens were gradually heated to 450 ◦C for 60 min, 
(2) then kept at this temperature for 45 min, (3) then reheated to 750 ◦C 
for 45 min, (4), then kept at this temperature for 60 min, and (5) furnace 
cooled to room temperature. After the heat treatment, the surfaces were 
sandblasted using a dental sandblasting mixture (with 63–125 µm zir-
conia with 28–33 wt.% silica and less than 10 wt.% alumina), ultra-
sonically cleaned in isopropyl alcohol and deionized water, and dried in 
a convection oven. This surface finish is denoted ‘as-received’. Half of 
the specimens were further abraded using P1200 SiC paper with 
deionized water as a lubricant, followed by ultrasonic cleaning in 
acetone and ethanol (5 min each) and drying using nitrogen gas, 

denoted ‘abraded’. 

2.2. Microstructure and surface roughness characterization 

Before microstructural analyses, all specimens were polished with 
0.25 μm diamond paste and then electropolished for 20 s at 4 V using a 
1:9 (by volume) solution of HCl and H2O. Optical microscopy (OM, 
Nikon EpipHot 300) and scanning electron microscopy (SEM, Philips XL 
30) techniques were utilized for characterization. Phase identification 
was also conducted using X-ray diffraction (XRD, Phillips, Netherlands) 
equipped with a CuKα radiation source (λ = 0.154 nm, 40 kV, 40 mA) 
scanning from 20 to 80◦ (2Ɵ). The roughness value (Ra) of different 
specimens was determined using a Stylus profilometer (Mitutoyo 
SJ210). In addition, surface topography mapping and roughness mea-
surements were performed using a ZEISS LSM 800 confocal microscope 
manufactured by Carl Zeiss Microscopy GmbH. The surface roughness 
and surface area were calculated using version 7.4.8341 of Mountains 
ConfoMap software. The calculations were performed by the standard 
ISO 25178-2:2012. 

2.3. X-ray photoelectron spectroscopy (XPS) 

XPS can probe the outermost (7–10 nm) surface of the specimens and 
was used to characterize the surface composition of unexposed as- 
received XY, as-received XZ, abraded XY and abraded XZ specimens. 
The XPS analyses were carried out with a Kratos AXIS Supra X-ray 
photoelectron spectrometer using a monochromatic Al Kα source (15 
mA, 15 kV). XPS has detection limits ranging from 0.1 to 0.5 at.% 
depending on the element. The instrument work function was calibrated 
to give a binding energy (BE) of 83.96 eV for the Au 4f7/2 line for 
metallic gold. The spectrometer dispersion was adjusted to give a BE of 
932.62 eV for the Cu 2p3/2 line of metallic copper. The Kratos charge 
neutralizer system was used on all specimens. All specimens were 
mounted electrically isolated from the instrument sample holder for 
these analyses. For all measurements, survey scan analyses were carried 
out with an analysis area of 300 × 700 µm and a pass energy of 160 eV, 
and high-resolution analyses were carried out with an analysis area of 
300 × 700 µm and a pass energy of 20 eV. High-resolution C 1s, O 1s, Si 
2p (selected samples), Co 2p, Cr 2p, and Mo 3d were run. All high- 
resolution spectra were charge-corrected using adventitious carbon (C 
1s, 284.8 eV). Peak convolution was conducted according to previously 
published protocols [26–28]. 

2.4. Corrosion studies 

The corrosion behavior of the printed specimens was assessed using 
electrochemical impedance spectroscopy (EIS) and potentiodynamic 
polarization in three solutions of phosphate-buffered saline (PBS, 8.77 
g/L NaCl, 1.28 g/L Na2HPO4, 1.36 g/L KH2PO4, 350 µL/L 50% NaOH, 
pH 7.2–7.4,), citric acid (CA, 5 g/L citric acid, pH=2.40), and CA + PBS 
(pH = 7. 40) solutions. The choice of citrate-containing PBS was based 
on its similarity to many biological environments, including protein 
environments, due to its complexation capacity [22–25]. Citrate has 

Table 1 
As per supplier information, chemical composition of CoCrMo (F75) alloy powder.  

Element Cr Mo Mn Si N Fe Ni C W Co 

wt.% 28.0 6.10 0.77 0.57 0.22 0.20 0.05 0.02 0.02 Bal.  

Table 2 
LPBF setup and parameters.  

Power Spot size Scan speed Layer thickness Scan spacing 

200 W 70 µm 2 m/s 40 µm 70 µm  
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been used as a simplified model molecule for many physiological solu-
tions [29–32]. PBS without CA and CA without a buffer served as 
reference solutions. 

These evaluations were conducted in a three-electrode system, with a 
Ag/AgCl (saturated KCl) reference electrode, platinum counter elec-
trode sheet and CoCrMo specimens as working electrodes, all coupled to 
an AMETEK potentiostat/galvanostat (PARSTAT 2273). Before each 
test, the specimens were immersed for 45 min, and the open circuit 
potential (OCP) was measured to reach a steady state condition. EIS tests 
were conducted at OCP with an alternating current (AC) amplitude of 
10 mVrms and a frequency range of 100,000 to 0.01 Hz. The potentio-
dynamic polarization tests were conducted from − 250 to 1500 mV vs. 
open circuit potential with a scanning rate of 1 mV/s. Selected corrosion 
parameters (icorr, βa, βc and Ecorr) were obtained based on the Tafel 
extrapolation method. 

2.5. Bioactivity studies 

To investigate hydroxyapatite formation on the surface (in the 
following referred to as “bioactivity”) of the printed specimens and the 
effect of grinding (with P1200 SiC paper), the specimens were immersed 
in 20 mL simulated body fluid (SBF) and incubated at 37 ◦C for 7, 14 and 
28 days (no shaking) in an incubator (Memmert GmbH, Germany) to 
prevent being exposed to the light. After immersion, the specimens were 
removed from the SBF, rinsed with distilled water, and dried in an oven. 
The surface morphology and composition (information depth of mi-
crometers) were studied using scanning electron microscopy (SEM; SE 
detector; Philips XI30) and energy dispersive X-ray spectroscopy (EDX). 
The composition of SBF is depicted in Table 3. 

2.6. Cell culture 

Osteoblast-like MG63 cells (Pasteur Institute of Iran, Iran) were 
aseptically cultured in DMEM (Dulbecco’s Modified Eagle Medium) 
supplemented with 10% fetal bovine serum (FBS) and 1% penicillin/ 
streptomycin (Sigma-Aldrich Co; USA) at 37 ◦C in a humidified 5% CO2 
incubator in the dark. The media was exchanged 2–3 times per week, 
and the cells were sub-cultured at 80% confluency. Rectangular 5 × 5 
mm2 scaffolds were sterilized in 70% ethanol for 1 h, followed by UV 
irradiation of both sides for 1 h. The sterilized scaffolds were submerged 
in the cell culture medium overnight, and then the media inside the 
wells were aspirated, and the cells were seeded on top of the scaffolds. 
The cells were used at passage 5− 7 and seeded at a 5 × 103 cell/scaffold 
density before adding 500 µL of cell culture medium to each well. To 
enhance the seeding efficiency, the cells were added in a minimal vol-
ume of media (i.e., 10 μL). Then 500 µL of culturing media was added 
after 10 min to enable sufficient adherence of the cells to the scaffold. 
The scaffolds were kept at 37 ◦C in a humidified 5% CO2 condition, and 
the media was changed every second day until the end of the experiment 
on day 7. 

2.7. Cell adhesion and morphological characterization 

The morphology of adhered cells on the specimens was visualized by 

SEM. After 7 days, the cells on the specimens were washed with PBS, 
then fixed with 4% (w/v) PFA (paraformaldehyde) in PBS for 30 min at 
37 ◦C. After three times washing with PBS, the cell-seeded surfaces were 
dehydrated before SEM imaging by successive immersions in 30%, 50%, 
70%, 90%, and 100% ethanol solutions for 30 min at each concentra-
tion. They were then submerged in 100% hexamethyldisilazane (Sigma- 
Aldrich Co; USA) for another 30 min at room temperature and finally 
imaged by SEM after complete drying in air. 

2.8. Cell viability 

The relative (to negative control) viability of cells seeded on the 
specimens was studied by the MTT assay. MTT stands for 3-(4,5-dime-
thylthiazol-2-yl)− 2,5-diphenyltetrazolium bromide (Sigma-Aldrich Co; 
USA). MTT solution (0.5 mg/ml in DMEM and penicillin/streptomycin 
without FBS) was prepared fresh and filtered (0.2 µm cellulose mem-
brane Syringe Filter) at each time point (i.e., day 1, 3 & 7). After these 
time points, the culture medium (DMEM) in the wells was completely 
replaced with 300 µL MTT solution. The cells were incubated at 37 ◦C 
under a 5% CO2 atmosphere for 4 h. Then, the MTT solutions were 
aspirated, and 300 µL dimethyl sulfoxide (DMSO, Sigma-Aldrich Co; 
USA) was added to each well, and the plate was placed on a shaker for 
10 min to dissolve formazan crystals completely. The solutions in the 
wells were transferred to a 96-well plate, and the absorbance was 
measured using a microplate reader at 630 nm. The viability assay was 
run with three replications for each specimen and the negative control. 
The viability is presented as a percentage of the negative control, where 
100% or higher corresponds to no cytotoxicity (all cells at least as viable 
as in the negative control), and 0% corresponds to maximal cytotoxicity 
(all cells dead). The optical density corresponding to cell adsorption 
(OD) was read for wells containing the specimens and compared to the 
control wells without the specimens, as in Eq. (1), to reveal the cell 
viability in%. 

Cell Viability% =
OD(specimen) − OD(blank)
OD(control) − OD(blank)

× 100 (1) 

In this equation, OD(specimen) corresponds to the cell adsorption of 
the metallic specimen, OD(blank) corresponds to the DMSO solution 
(background), and OD(control) corresponds to the cell adsorption rate of 
the cell-seeded and plasma-pre-treated well without metallic specimens. 

2.9. Statistical analysis 

When comparing two sets of data from independent specimens for 
different conditions, a student’s t-test with unequal variance for un-
paired data was used (KaleidaGraph v. 4.0). P values <0.05 (less than 
5% probability that the two data sets are equal) are counted as statis-
tically significant differences. 

3. Results and discussion 

3.1. Microstructure and surface roughness 

Fig. 1 (a-c) depicts the surface morphology of the fabricated speci-
mens after the electro-etching treatment to obtain metallographic in-
formation. A heterogeneous microstructure with tracked and scaled 
segments is revealed for specimens prepared from transverse (XY-plane) 
and longitudinal (XZ-plane) directions, respectively [34]. A network of 
overlapping melt pools was observed in the XY plane. In contrast, 
half-cylinder melt pools were observed for the XZ plane, agreeing with 
literature findings for powder bed fusion processes and fusion welding 
procedures [35]. Because of loose/solid powder around the melt pool, 
competitive growth occurs for LPBF, yielding various growth directions. 
The observed ripple solidification could be due to the sequential solid-
ification of teardrop melt pools during the LPBF process. Vertical 
columnar grains in the XZ plane could be caused by heterogeneous 

Table 3 
Composition of the simulated body fluid (SBF), with pH 7.4, 
adjusted with 1 M HCl; adapted from [33].  

Reagent Composition (g/L) 

NaCl 8.035 
NaHCO3 0.355 
KCl 0.225 
K2HPO4⋅3H2O 0.231 
MgCl2⋅6H2O 0.311 
CaCl2 0.292 
Na2SO4 0.072  
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nucleation, as previous layers act as nucleation sites for subsequent 
layers [35]. 

As the formation of defects and porosity is detrimental to the func-
tional performance of the LPBF materials, optical images were also 
recorded without etching and presented in Fig. 1 (d-f). ImageJ software 
recorded 2% and 3% porosity values for the XZ and XY planes. As- 
received XY and XZ specimens show distinctly different surface mor-
phologies and roughness, as depicted in Fig. 1 (g-h), with a rougher 
appearance for XY. Fine columnar and cellular microstructures are 
visible on the surfaces of abraded/etched specimens (Fig. 1, i-j). 

Different void types were observed for the abraded XY and XZ planes 
using optical microscopy, Fig. S1 (supplementary information). For the 
XY plane, only gas porosities (round) were observed; however, both gas 
porosities and lack of fusion defects were observed for the XZ plane. The 
morphology of the voids can be influenced by various factors, including 
energy density, heat flow and solidification of the melt pool during the 

LPBF process [36]. Lack of fusion defects are formed due to inadequate 
penetration of the molten pool of a layer into the previously printed 
layers. Hence, they are only seen for the XZ plane with a high density of 
melt pool boundaries (Fig. 1b). 

XRD spectra of abraded XY and XZ specimens are presented in Fig. 1 
(k), showing face-centered cubic (FCC) γ phase as the main phase in the 
printed specimens, while hexagonal close-packed (HCP) ε phase peaks 
could also be found [17,34,35]. No other phase was identified (instru-
mental detection limit ~5 vol.%). The ε phase derives from martensitic 
transformation (γ→ε) during subsequent heating processes (subsequent 
layers) [16,37]. Furthermore, heat treatment can alter the phase 
composition of CoCrMo alloy. Specifically, the heat treatment of the 
specimens at 750 ◦C for 1 h increased the transformation to martensite 
[38]. 

Fig. 1(l) depicts the surface roughness values of the abraded and as- 
received XY and XZ surfaces, with a higher surface roughness (Ra = 5.3 

Fig. 1. Optical micrographs of different planes of the CoCrMo specimens: (a,d) top (XY plane), (b,e) mid (XZ plane), (c,f) bottom (XZ plane) areas (inset: merged 
sides in 3D). SEM micrographs of the printed CoCrMo specimens at (g) low magnification view of as-received XY, (h) low magnification view of as-received XZ, (i) 
high magnification view of the abraded and etched XY, (j) low magnification view of abraded and etched XZ. (k) XRD patterns of the abraded XY and XZ specimens. 
(l) Surface texture parameters of the printed CoCrMo in the as-received and abraded conditions. The error bars show the standard deviation of triplicate mea-
surements. Ra (arithmetical mean deviation of the assessed profile), Rp (maximum peak height), Rq (root mean square average of the profile), Rv (maximum valley 
depth) and Rz (maximum height of the profile). 
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± 0.6 μm) for the as-received XY compared to the as-received XZ (2.6 ±
0.3 μm). A similar trend was seen for the maximum profile peak height 
(Rz), being 20% higher for XY compared to XZ (59 ± 3.5 compared with 
47 ± 2.7 µm). For abraded specimens, there was no significant differ-
ence. The higher surface roughness of the as-received XY than XZ was 
also confirmed by confocal microscopy, Fig. S2. For a geometrical area 
of 2.25 cm2, confocal microscopy found an actual surface area of 2.79 
and 2.39 cm2 for as-received XY and XZ, respectively. The higher 
roughness of as-received XY (top plane, a single layer of melted and 
solidified powders) could be attributed to defects of material filling or 
the localized lack of fusion. It has been claimed that the spatter ejection 
of molten material from the pool could facilitate the formation of cav-
ities and a coarser surface [20]. 

In all, the microstructural investigation confirms a dense LPBF 
printing and distinct microstructures for XY and XZ planes. As-received 
XY was coarser than XZ. 

3.2. Surface characterization 

XPS was used to determine the surface (7–10 nm) composition and 
the speciation of Co, Cr, and Mo, Fig. 2. Carbon, oxygen, and silicon 
were the three most abundant elements on the surface. Carbon origi-
nates mainly from adventitious carbon, which is well-known [39]. The C 
1s high-resolution spectrum further confirms the absence of carbides 
and the dominance of C-C and C–H bonds, Figs. S3–S6. The 
high-resolution peak of O 1s revealed the dominance of a peak at 532.4 
± 0.1 eV, which can be assigned to oxygen originating from organic 
substances or SiO2. Because of the concomitant presence of silicon, we 
also analyzed the Si 2p high-resolution for two of the specimens 
(as-received and abraded XY). Based on the peak positions (Si 2p3/2 
102.15–102.18 eV), Fig. S7, the most probable origin is silicone [28], a 
common contaminant. Within the detection depth (7–10 nm), metallic 
peaks of Co, Cr, and Mo were detected in all cases (Figs. 2b and S3–S6), 
suggesting a rather thin (a few nanometers) surface oxide. Co, Cr, and 
Mo oxide species were relatively similar for all specimens: Co(OH)2, 
Cr2O3, Cr(OH)3, and Mo oxide in the valence states of IV, V, and VI. 
There appears to have been a consistent growth of oxidized molybde-
num after the polishing procedure, which is expected for neutral water 
exposure [40]. 

3.3. Corrosion 

3.3.1. Open circuit potential and cyclic polarization 
The OCP shifted towards more positive potentials for all specimens 

and solutions during 2800 s of immersion. There was no statistically 
significant difference between the different surface conditions (abraded, 
as-received, XY, XZ) within one solution. There were significant 
(P<0.05) differences between the three solutions in all cases, except for 
abraded XY in CA compared with PBS-CA. PBS solution (pH 7.4) resulted 
in the most negative OCP (-0.27 ± 0.04 VAg/AgCl) after 2800 s of im-
mersion, with PBS+CA (pH 7.4) showing a more positive OCP 

(− 0.052 ± 0.012 V), and the most acidic solution having the most 
positive OCP (0.17 ± 0.038 V). This positive shift with time indicates a 
passivating behavior (gradual improvement of the passive film on the 
surface) [34] upon immersion in a physiologically relevant solution. 
This has been reported previously for biomedical CoCrMo alloys [41, 
42]. 

Similar to the OCP, the Ecorr value (the corrosion potential, which is 
the potential at which the net current is zero during the polarization) 
was not significantly different among the different specimens but 
showed a significant difference between CA (pH 2.4) and PBS (pH 7.4), 
as well as between CA and PBS+CA (pH 7.4), due to the pH difference 
(potentials in aqueous systems shift with pH), Table 4 and Fig. 3. In PBS 
(Fig. 3b, Table 4), however, the Ecorr seemed to be different among the 
specimens (Abr. XY < Abr. XZ < AR XZ < AR XY), with a difference of at 
most 460 mV but this was not statistically significant (P > 0.05). The 
corrosion current density (icorr), which is the current density determined 
from the intersection of the anodic and cathodic branch (linear extrap-
olation), was not different among the solutions and not different be-
tween the specimens in CA (pH 2.4) and PBS+CA (pH 7.4). However, in 
PBS (pH 7.4), there was a statistically significant (P<0.05) difference in 
corrosion current density between as-received XY (0.075±0.008 µA/ 
cm2) and as-received XZ (0.015±0.003 µA/cm2), as well as between as- 
received XY and abraded XY (0.017±0.012 µA/cm2). This difference 
cannot be explained by the difference in actual surface area (at most 
25% difference, Section 3.1). Likewise, for the passive current density 
(here defined as the current density where the anodic branch becomes 
horizontal [43]), only the difference between as-received XY (0.74 
±0.37 µA/cm2) and as-received XZ (0.07±0.04 µA/cm2) in PBS (pH 7.4) 
was statistically significant. Hence, there seems to be a larger influence 
of the plane (XY vs. XZ) for as-received surfaces, and abrasion seems to 
result in lower corrosion currents and a larger passive region, Fig. 3 and 
Table 4. This finding agrees with previous work on the corrosion of LPBF 

Fig. 2. Surface composition estimated from the XPS wide spectra (a) and relative surface composition and speciation of the elements Co, Cr, and Mo (b) of as- 
received (AR) and abraded (Abr.) CoCrMo surfaces in XY and XZ planes. Corresponding spectra are shown in Figs. S3–S7 (supplementary information). 
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316L [4]. 
There were no indications of localized corrosion (lower potential 

during reverse scan than during forward scan, Fig. 3), which agrees with 
previous work [44]. The rapid increase in current density at high po-
tentials can hence be attributed to water oxidation and maybe trans-
passive dissolution but not localized corrosion [45–47]. This conclusion 
was further confirmed by inspection by optical microscopy after the 
polarization. 

While there was no significant difference among solutions for the 
corrosion and passive corrosion density, the transpassive region (current 
increase at high potentials) occurred clearly at lower potentials in 

PBS+CA compared to PBS (both at pH 7.4). This is supported by the 
work conducted on LPBF 316L in PBS and PBS + citric acid [29] and 
may be attributed to the formation of metal-citrate species, which can 
increase dissolution in some cases [4,40]. Also, there was a clear 
oxidation shoulder peak around 0.7 V in both solutions, which is 
assumed to be the formation of a phosphate-chromium complex [32]. 

For other alloys, porosity has been discussed as an important factor 
for the pitting corrosion susceptibility or repassivation ability [21]. In 
this study, the specimens were fabricated with the highest possible 
density (low porosity) and exhibited a very high pitting corrosion 
resistance under all conditions. As observed in this study and previous 
studies [48], small pores do not detrimentally affect the pitting resis-
tance of CoCrMo alloys. 

In all, the CoCrMo specimens were passive and not undergoing 
localized corrosion. There was an effect of the building direction for as- 
received specimens (highest corrosion for as-received XY) and an effect 
of the solution (highest currents in PBS+CA) at high potentials. 

3.3.2. Electrochemical impedance spectroscopy 
Fig. 4 shows Nyquist (a-c) and Bode plots (d-e) based on EIS after 1 h 

immersion at OCP. The Nyquist plots are all semicircular arcs indicating 
a typical passive state with high impedance values with capacitive 
behavior. The semicircle diameter in these curves equals the charge 
transfer resistance, which is related to corrosion resistance. The Bode 
plots show three distinctive regions. The absolute impedance is inde-
pendent of frequency in the high frequencies (the phase angle is around 
0◦). In these frequencies, the impedance corresponds to the resistance of 
the electrolyte between working and reference electrodes. A purely 
capacitive response is obtained in the low to medium frequency levels. 
In these frequencies, the absolute impedance exhibits a linear relation-
ship with the frequency (a slope approaching -1). In the low-frequency 
range, the absolute impedance is independent of the frequency. 

The electrolyte resistance was higher in CA (pH 2.4) than in the PBS- 
containing electrolytes, Fig. 4 and Table 5. In the medium and low- 
frequency segments, the Bode plots represent the charge transport 
characteristics across the double layer and the passive oxide film, 
respectively. Here, the maximum phase angle values are between 70 and 
90◦ within a wide range of frequencies (0.1 to 100 Hz). Higher values 
mean more stable passive oxide films and a higher corrosion resistance 
[49]. 

The simplified Randles equivalent electrical circuit (EEC) was used to 
fit the EIS results (Fig. 4), similar to other studies on the corrosion 
behavior of CoCrMo alloy in simulated physiological solutions [49–51]. 
The goodness of fitting (χ2) values were below 10− 3. Table 5 shows the 
resulting fitting parameters. Rs denotes the solution resistance, Rp is the 
native oxide film resistance, CPE is the constant phase element, Ceff is 
the effective capacitance, and n is the phase constant exponent. A CPE 

Table. 4 
Cathodic and anodic Tafel constants (βa and βc), corrosion current densities 
(icorr), passive current densities (ipass) and corrosion potentials (Ecorr) based on 
potentiodynamic polarization of the LPBF CoCrMo specimens after 1 h immer-
sion in citric acid (CA) (pH=2.4), PBS (pH 7.4), and CA + PBS (pH = 7. 4) so-
lutions at room temperature.  

Systems Materials Tafel parameters      
βa 

(mV) 
βc 

(mV) 
icorr (µA/ 
cm2) 

ipass 

(µA/ 
cm2) 

Ecorr 

(mVAg/ 

AgCl) 

CA As- 
received 
XY 

95 ±
74 

169 ±
16 

0.3  ±
0.2 

0.8  ±
0.4 

135 ± 30 

Abraded 
XY 

22 ±
20 

230 ±
139 

0.004 ±
0.002 

0.02 ±
0.01 

− 19 ± 40 

As- 
received 
XZ 

290 ±
201 

190 ±
96 

0.1  ±
0.02 

0.2  ±
0.04 

140 ± 31 

Abraded 
XZ 

37 ± 7 151 ±
19 

0.001 ±
0.0004 

0.02 ±
0.01 

59 ± 37 

PBS As- 
received 
XY 

96 ± 4 137 ±
38 

0.07 ±
0.01 

0.7  ±
0.4 

23 ± 49 

Abraded 
XY 

71 ± 9 171 ±
17 

0.02 ±
0.01 

0.3  ±
0.4 

− 432 ±
197 

As- 
received 
XZ 

61 ± 7 191 ±
46 

0.02 ±
0.003 

0.07 ±
0.04 

− 219 ±
17 

Abraded 
XZ 

64 ±
19 

180 ±
3 

0.01 ±
0.003 

0.1  ±
0.1 

− 411 ±
117 

CA+PBS As- 
received 
XY 

100 ±
1 

136 ±
1 

0.05 ±
0.05 

0.4  ±
0.4 

− 84 ±
± 33 

Abraded 
XY 

71 ±
32 

57 ±
22 

0.002 ±
0.002 

0.01 ±
0.01 

− 138 ±
46 

As- 
received 
XZ 

61 ±
40 

91 ±
21 

0.04 ±
0.05 

0.2  ±
0.2 

− 89 ±
112 

Abraded 
XZ 

49 ±
17 

109 ±
59 

0.004 ±
0.005 

0.03 ±
0.04 

− 216 ±
114  

Fig. 3. Representative cyclic polarization curves (forward and reverse scans) for as-received (AR) and abraded (Abr.) CoCrMo specimens in XY and XZ plane in citric 
acid (pH=2.4) (a), PBS (pH 7.4) (b), and PBS + citric acid (pH = 7. 4) (c) solutions at room temperature. 
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was used due to the non-ideal capacitance of the capacitive elements 
because of different physical phenomena, such as surface heterogeneity 
originating from surface roughness, pores, impurities and grain bound-
aries [52,53]. The impedance of the CPE is defined as ZCPE=[Yo(jwn)− 1] 
where, Y0 is the frequency-independent constant, j is the imaginary unit 
(j2=–1), ω is the angular frequency, and n (0 ≤ n ≤ 1) is the phase 
constant exponent representing surface irregularities. Depending on n, 
CPE can be related to a pure resistor (n = 0, Yo=R), a pure capacitor (n =
1, Yo=C), or the Warburg impedance (n = 0.5, Yo=W). The Ceff values 
were determined as follows [54]: 

Ceff = Q1/n × Rp
(1− n)/n (2) 

The effective capacitance can be linked to the film thickness as fol-
lows [55]: 

Ceff = ε × ε0 ×
A
d

(3)  

where ε is the relative dielectric constant (ε0 is the permittivity in vac-
uum), A is the surface area, and d denotes the film thickness. 

The EIS data revealed that the solution, the roughness (as-received 
versus abraded), and the build direction influenced the barrier charac-
teristics of the passive layers formed on the surfaces. According to the 
fitted data presented in Table 5, Rp was significantly (P<0.05) lower in 
PBS compared with CA and CA+PBS (only for XY) for the abraded 
specimens and lower in CA+PBS compared with CA for the abraded XZ 
specimen. This behavior can be attributed to the adsorption of citrate 
ions on the oxide layer and their complexation with metal ions in the 
oxide, which accelerates passivation (chromium enrichment due to 
preferential dissolution of cobalt) [32,56]. The superior passivity char-
acteristics of the samples in this work agree with the results reported for 
LPBF 316L stainless steel in a citrate buffer and PBS solutions [29]. 

The Ceff was higher for the as-received compared with the abraded 
specimens for both XY and XZ planes, statistically significant in both PBS 

Fig. 4. Representative Nyquist (a-c), Bode phase angle (d-f), and Bode impedance (insets in d-f) plots of as-received and abraded CoCrMo in planes XY and XZ after 1 
h immersion in citric acid (pH 2.4) (a, d), PBS (pH 7.4) (b, e), and PBS + citric acid (pH 7.4) (c, f) at room temperature. The inset in (a) shows the equivalent electrical 
circuit for the analysis of the impedance spectra (Table 5). Lines – fit; symbols – data points. 

Table 5 
EIS fitting parameters (average and standard deviation of two independent specimens). A one-time constant (Randles equivalent electrical circuit) was applied.  

Systems Materials Parameters        
Rs (Ω cm2) CPE (Y0, µFcm− 2s− n) Ceff (µFcm− 2) n Rp (MΩ cm2) χ2 (10− 3) 

CA As-received XY 220 ± 0.78 123 ± 9.3 87 ± 28 0.91 ± 0.06 1.7  ± 2.2 0.52 ± 0.04  
Abraded XY 230 ± 13 19 ± 3.2 12 ± 0.53 0.93 ± 0.04 37 ± 4.6 0.36 ± 0.07  
As-received XZ 255 ± 8.8 92 ± 9.2 58 ± 11 0.89 ± 0.01 18 ± 3.0 0.58 ± 0.10  
Abraded XZ 205 ± 7.1 23 ± 2.3 15 ± 6.2 0.93 ± 0.05 39 ± 1.0 0.25 ± 0.04 

PBS As-received XY 24 ± 2.3 104 ± 20 50 ± 6.2 0.89 ± 0.01 3.9  ± 1.7 0.42 ± 0.04  
Abraded XY 23 ± 3.3 23 ± 3.9 15 ± 7.6 0.94 ± 0.04 13 ± 3.4 0.28 ± 0.04  
As-received XZ 23 ± 1.3 50 ± 1.6 18 ± 5.4 0.87 ± 0.03 7.4  ± 0.65 0.51 ± 0.13  
Abraded XZ 31 ± 2.6 27 ± 4.7 17 ± 2.5 0.94 ± 0.04 13 ± 2.8 0.48 ± 0.04 

CA+PBS As-received XY 28 ± 1.5 113 ± 6.3 74 ± 9.7 0.93 ± 0.03 1.7  ± 0.20 0.64 ± 0.04  
Abraded XY 18 ± 2.5 23 ± 3.4 15 ± 3.1 0.95 ± 0.04 25 ± 2.7 0.73 ± 0.04  
As-received XZ 17 ± 1.0 161 ± 15 97 ± 8.8 0.92 ± 0.03 3.2  ± 0.43 0.19 ± 0.04  
Abraded XZ 19 ± 0.56 20 ± 0.6 15 ± 3.2 0.97 ± 0.02 20 ± 0.61 0.21 ± 0.02  

M. Atapour et al.                                                                                                                                                                                                                               



Electrochimica Acta 445 (2023) 142059

8

(for both XY and XZ) and CA+PBS (for XZ). A similar trend was seen for 
CPE (statistically significant in CA and CA+PBS). Further, the Ceff was 
higher (P<0.05) for as-received XZ samples in CA+PBS than in PBS. 
Based on Eq. (3), an increase in the Ceff means a decrease in the thickness 
of the passive layer or the dielectric constant of the passive layer [57]. 
Hence, it seems that the passive film formation was accelerated for 
abraded CoCrMo surfaces and, in some cases (as-received XZ), in the 
presence of citrate species. A similar trend was found for Rp for 
as-received XZ in the solutions containing CA (higher Rp for abraded 
than as-received surfaces). 

Hence, the barrier characteristics of the passive layer formed on the 
as-received surfaces (for both XY and XZ samples) were inferior to the 
abraded samples, and the difference in the actual surface area cannot 
explain this. An inferior barrier could be attributed to the higher 
porosity and surface defects, such as lack of fusion and non-melted metal 
powders, or other factors, such as the sandblasting procedure [21,58]. 

In line with the cyclic polarization data, the corrosion resistance, 
estimated from EIS, was lowest for the as-received XY. It was also lower 
for as-received than for abraded specimens, Fig. 4 and Table 5. 

3.4. Bioactivity and biocompatibility 

Any precipitation of hydroxyapatite layers on the surface of the 
specimens was investigated in a bioactivity assay after incubation at 
37 ◦C (static conditions) in SBF for 7, 14, and 28 days. The specimens 
were evaluated using SEM (Fig. 5), and the atomic Ca/P ratio was 
investigated using EDS (Fig. 6). EDS further confirmed that Ca and P 
were the only elements of that surface layer. Fig. 5 reveals gradually 
increasing/covering layers of precipitates on all specimens (P < 0.05). 
After 28 days, almost the entire surface was covered with a thick layer of 
aggregates. The atomic Ca/P gradually increased with exposure time for 
all specimens, and there was no significant difference found among the 
specimens. After 28 days, the Ca/P ratio was 1.65±0.1, which is close to 
the ratio of natural hydroxyapatite of 1.67 [59]. 

Fig. 7 shows SEM images of the adhesion and expansion capability of 

MG63 cells cultured on the surface of as-received and abraded XY and 
XZ CoCrMo surfaces. Fewer cells were adhered on as-received than on 
polished surfaces after one day, independent of building direction. Over 
time, on Day 7, the rate of adhesion and cell proliferation increased 
sharply for all specimens. However, slightly more cells adhered to the as- 
received specimens after 7 days, possibly related to higher surface 
roughness [60]. The morphology of all cells on the surface of the 

Fig. 5. SEM images of different specimens after immersion for 7 (D7), 14 (D14), and 28 (D28) days at 37 ◦C in simulated body fluid. Insets show overview images at 
lower magnification. 

Fig. 6. Atomic Ca/P ratio (using EDS) of different specimens after immersion 
for 7 (D7), 14 (D14), and 28 (D28) days at 37 ◦C in simulated body fluid. The 
error bars show the standard deviation among triplicate measurements. The 
asterisks indicate statistically significant increases compared to the specimens 
after 7 days (D7): * - p < 0.05; ** - p < 0.01. Examples of corresponding SEM 
images are shown in Fig. S8. 
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specimens is relatively stretched, and the cells completely cover the 
surface after 7 days. Lamellipodia and filopodia can be seen at higher 
magnification, indicating the tendency of the cells to attach to the sur-
face of the specimens. 

The cell viability was determined using the MTT assay after one, 
three, and seven days, Fig. 8. There was no significant difference among 
the specimens. All specimens showed fully viable cells (compared to 
control) after one day but significantly decreased viability of cells after 
three and seven days. Some decrease of viability from Day 1 to 3 for the 
CoCrMo specimens was expected due to the control sample having 
better cell adhesion conditions due to the plasma treatment of the cell 
culture plates, which makes the well surfaces charged and hydrophilic. 
Thus, cells on the control surface started their proliferation phase faster 
than on the metallic surfaces, leading to higher viability for Day 1. The 
cell viability increased slightly for all specimens from Day 3 to Day 7 
because, during this period, cells on the metallic specimens had enough 
time to secrete extracellular matrix proteins on the surface, aiding in 
adherence, migration, and proliferation of cells on the surface. After 

three and seven days, there was a slightly higher viability, however not 
statistically significant (P > 0.05), for the as-received CoCrMo surfaces 
compared to their abraded counterparts. Based on the rate of cell 
viability in the MTT test, all specimens would be considered biocom-
patible materials by ISO-10993 [61]. 

3.5. Further discussion 

As-received, rougher surfaces showed inferior corrosion barrier 
properties compared with abraded surfaces in this study. The difference 
in actual surface area cannot explain the difference. Like in this study, a 
negative influence of surface roughness on corrosion was reported for 
various LPBF materials [62–64]. It is well known that the LPBF speci-
mens are associated with higher roughness (range from 10 μm to 30 μm) 
than parts fabricated with conventional methods, such as milling 
(~1 μm) [11]. The surface roughness of the LPBF products can be 
affected by factors such as the fabrication strategy, laser power, powder 
geometry, and heat input [65]. However, the roughness is not the only 
factor changing between as-received and abraded surfaces. The crystal 
structure, microstructure, residual stresses, unfused particles, and im-
pacts from surface treatments (sandblasting, grinding) are also changing 
[16,66], so it is not straightforward to determine which physicochemical 
factor influenced corrosion and biocompatibility most. 

While the rougher, as-received surfaces had detrimental corrosion 
behavior in this study, they showed higher bioactivity (adsorption of 
hydroxyapatite) and slightly higher cell viability. It has been reported 
that hydroxyapatite acts as a barrier layer and is beneficial for the 
corrosion resistance of CoCrMo [67]. Various factors such as porosity, 
surface properties, mechanical properties and ion release rate can affect 
the biological activities of cells [9]. Increasing surface roughness at the 
micro and nano scales has been shown to increase cell interaction and 
adhesion to the surface [2]. Therefore, the slightly increased cell 
viability of the rougher, as-received, CoCrMo surfaces in this study was 
expected. 

Using potentiodynamic polarization, only the combination of citrate 
species and oxidative potentials resulted in higher corrosion/dissolution 
for CoCrMo in this study. This observation agrees with the reported 
corrosion current densities of CoCrMo as a function of citrate concen-
tration [56], only slightly changing at the concentration of citrate used 
in this study (26 mM). The increased current of CoCrMo specimens at 
high oxidation potential and in the presence of citrate species is inter-
esting from several perspectives. First, complexation caused by citrate is 
very similar to what is expected in physiological environments, where 
many biomolecules have complexing properties to metals. Citrate 

Fig. 7. SEM images of the cell-seeded as-received (AR) or abraded (Abr.) XY and XZ CoCrMo surfaces after days 1 and 7. The inset images show images at lower 
magnification. 

Fig. 8. Cell viability as compared to control, determined using the MTT assay 
after 1 (D1), 3 (D3), and 7 (D7) days at 37 ◦C for triplicate specimens. The 
asterisks indicate a statistically significant decrease (* - P < 0.05; ** - P <0.01) 
in cell viability. 
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species are only able to complex metals at pH values, for which they are 
not fully protonated, so the control solution of citric acid at pH 2.4 is not 
a complexing solution [23]. It has previously been reported that there 
can be synergistic effects of oxidizing and complexing agents for the 
dissolution of metals from passive surface oxides, as reported for pro-
teins and hydrogen peroxide for titanium-aluminum alloys [68]. While 
applied potentials are not directly relevant to the human body, they 
simulate inflammatory and infectious conditions under which strong 
oxidative redox potentials can occur [8,69]. Without any applied po-
tential, the presence of citrate instead resulted in an increased corrosion 
resistance, as evident from this study’s EIS measurements at open circuit 
potential. This agrees with findings in a combined electrochemical and 
XPS study on CoCrMo, suggesting that Co preferentially dissolves in the 
presence of citrate and that passivity is only affected at elevated po-
tential ranges (under oxidation) in similar testing conditions as in this 
study [32]. 

This study found a higher corrosion susceptibility for as-received 
surfaces built in the XY plane compared with the XZ plane for highly 
dense LPBF CoCrMo specimens. This difference disappeared after sur-
face abrasion – removing the influence of surface roughness and surface 
treatments. XPS further revealed minor differences in oxide thickness 
and composition. Hence, we suspect that the as-built surface, but not 
underlying layers or anisotropy of the microstructure, cause the differ-
ences in corrosion behavior. The XZ plane had more defects and more 
melt pool boundaries. Our specimens were prepared after a biomedical 
manufacturing protocol, using heat treatment and low-carbon CoCrMo 
feed powder, resulting in negligible carbide precipitates at grain 
boundaries. This means that any detrimental microstructure anisotropy 
was minimized in this study. The beneficial effects of heat treatment and 
low carbon have been reported previously [56]. An electrochemical 
study [8] on abraded LPBF CoCrMo (low carbon, but not heat treated) in 
NaCl with H2O2 revealed a higher corrosion susceptibility (lower 
corrosion resistance) for the XY than the XZ plane, explained by more 
grain boundaries and secondary precipitates. Discussions in these and 
other [29,49] studies have suggested that the number of grain bound-
aries can have both positive and negative effects on the corrosion 
resistance and that secondary phases and grain boundary precipitates 
are to be avoided. This work highlights that a suitable heat treatment 
strategy can eliminate any anisotropic effects of microstructure in LPBF 
CoCrMo. 

This study is limited by its experimental conditions and design. 
Lower corrosion resistance under static corrosion testing conditions for 
the as-received XY plane was found but also higher cell viability and 
bioactivity for the as-received surfaces. It remains to be investigated 
which effects would dominate the corrosion process under long-term in- 
vivo conditions. Future studies should also examine the tribocorrosion 
behavior, which would be most relevant for CoCrMo alloys. 

4. Conclusions 

This study aimed to investigate the corrosion resistance, bioactivity, 
biocompatibility, and microstructure of LPBF CoCrMo (low carbon 
content, heat treated) in the XY and XZ plane of the building direction 
for as-printed (as-received) and abraded surfaces. The following main 
conclusions were drawn:  

1 LPBF printing resulted in distinct microstructures for XY and XZ 
planes. As-received XY was coarser than XZ.  

2 As-received XY showed the lowest corrosion resistance among the 
specimens. As-received surface conditions resulted in lower corro-
sion resistance than abraded surfaces, even when considering the 
actual surface area. There was no influence of building direction on 
corrosion resistance, bioactivity, or cell viability for abraded sur-
faces. Hence, the lower corrosion resistance for as-received surfaces 
was caused by surface factors and not microstructural features.  

3 Hydroxyapatite precipitated and formed on all surfaces but slightly 
more on as-received (rough) surfaces. Likewise, in terms of cell 
viability, all surfaces counted as biocompatible. However, the as- 
received surfaces had slightly higher cell viability.  

4 All CoCrMo surfaces exhibited passive conditions and were not 
showing signs of localized corrosion in citric acid (pH 2.4), PBS (pH 
7.4), and PBS and citric acid (pH 7.4).  

5 PBS containing the complexing citrate species from citric acid at pH 
7.4 resulted in lower corrosion resistance as compared to both PBS 
(pH 7.4) and citric acid (pH 2.4) alone, but only at elevated 
(oxidative) potentials. The lowest corrosion resistance was found in 
PBS by electrochemical impedance spectroscopy at open circuit po-
tential, probably due to an acceleration of passive film formation by 
the citrate species. 
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