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Abstract: Nanoclay has proven to be an active anti-corrosive additive due to the self-repairing effect
from nanoclay swelling and expansion, except for its passive barrier effect due to the high aspect ratio.
But it is still uncertain how these effects of nanoclay are intertwined with the other components in a
complex coating system in corrosive environments. In this study, we examined the combined effects
of nanoclays of two particle sizes with a commonly used cost-reducing filler, BaSO4. By employing
neutral salt spray tests, electrochemical analysis, and surface characterization, we identified the
optimal conditions for achieving a strong barrier effect. Surprisingly, a relatively low nanoclay dosage
of 2% combined with BaSO4 filler exhibited synergistic behavior. Nanoclay not only compensated
for the reduction in the barrier effect owing to the addition of BaSO4 by offering self-repairing and
barrier effects, but also overcame the delamination issues observed at higher nanoclay dosages (4%
and above). The coating panel with 2% larger nanoclay and BaSO4 showed two orders of magnitude
higher pore resistance than the coating without nanoclay, remaining at 107 Ω·cm2 after 25 days of
immersion. As a result, this coating panel demonstrated significantly slower corrosion expansion
and reached a lifetime of 2500 h when creepage exceeded 2 mm in salt spray tests. This study
contributes to a full understanding and proper utilization of nanoclay for high-performance, smart
anti-corrosive coatings.

Keywords: montmorillonite; additive; anti-corrosive; powder paint; polyester/TGIC; extender;
BaSO4; barium sulphate; electrochemical impedance spectroscopy; EIS

1. Introduction

Anti-corrosive coatings are crucial in protecting metallic materials, making them
economically and technically significant. Extensive research efforts have been devoted to
understanding their protection mechanisms and enhancing their performance [1,2]. The
corrosion process on uncoated or exposed steel substrates involves an electrochemical
reaction, leading to material deterioration. Effective coatings with good substrate adhesion
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serve as dense and compact barriers, reducing the permeability of aggressive ions such
as Cl−, oxygen and water, to the substrate. Such coatings can separate the anodic and
cathodic regions, inhibit the cathodic half-reaction, and alleviate the burden of higher pH
values that could degrade the coating binder [3,4]. Inadequate wet adhesion can also lead
to coating delamination due to changes in internal stresses caused by water [5,6].

We have evaluated the performance of two commercially available montmorillonite-
based nanoclays, Claytone® HT (C1) and CLOISITE® 30B (C2), as anti-corrosive additives
in the polyester/triglycidyl isocyanurate (TGIC) clearcoat powder coating system [7]. Both
clays have a layered structure and a high aspect ratio, which can increase the tortuosity
of coating films, decrease the permeability, and slow down the electrolyte ingress when
the coating is exposed to a corrosive environment [8,9]. Optimal dosages for each additive
were determined through systematic incorporation into the coating binder, followed by
evaluation using applicable ASTM standards, electrochemical measurements, and surface
and structure characterization. The nanoclay with a larger particle size exhibited more
superior barrier properties and self-repairing capabilities in the neutral salt spray and
electrochemical tests than the smaller one [7].

In coating formulations, fillers or extenders are common additives alongside resin,
curing agents, pigments, and other components [10,11]. Fillers contribute to reduced mate-
rial costs and enhanced mechanical strength [3,12–14]. While talc and barium sulfate are
known fillers for coatings, their combined use with other additives, such as montmoril-
lonite, has demonstrated enhanced anti-corrosive performance [3,15–18]. When used alone
in polyester/TGIC powder coatings, barium sulfate does not exhibit a barrier effect. Still, it
can reduce the required dosage of zinc phosphate as an anti-corrosive pigment [15]. More-
over, montmorillonite has been shown to function as a dispersion aid for other polymer
components [19].

Formulating coatings with multiple types of solid particles, including pigments, addi-
tives, and fillers, is common in research and industrial practices [20,21]. Such combinations
are typically evaluated experimentally due to the complexity of interactions between the
components. Studies on the combined effects are rare in the literature, and one of the
objectives of this study is to explore this topic in volatile organic compound (VOC)-free
powder coatings by electrochemical techniques.

This study further explores the incorporation of barium sulfate filler and the two
nanoclays to reduce the cost of polyester/TGIC powder coatings. The corrosion resistance
of the new coatings is investigated with electrochemical techniques in electrolyte immersion
and neutral salt spray tests in salt fog. The mechanical performance and surface quality of
coatings are crucial for industrial applications, and they are affected by the incorporation of
additives and fillers. These properties need to be assessed and compared with the original
coatings.

2. Experimental Section and Methods
2.1. Materials

The properties of the two nanoclay additives, Claytone® HT (C1) and CLOISITE® 30B
(C2), with a chemical structure of (Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2·nH2O (BYK-Chemie
GmbH, Wesel, Germany), are listed in Table 1. Both nanoclays are surface treated by
quaternary ammonium salts, which provides organophilicity to the particles [22] and
imrpoves the affinity between the clay and binder and enhancing particle dispersion [21].
To simulate a scenario closer to industrial practices, and to investigate the combined effect
of the nanoclay additives with a filler, barium sulfate (Mountain Minerals, Calgary, AB,
Canada, referred to as the “filler”) was selected for its cost-effectiveness and widespread
availability. The physical properties of the BaSO4 are summarized in Table 2.
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Table 1. The particle size distribution of the two nanoclays (measured with a laser particle size
analyzer, BT9300S, Bettersize Instruments Ltd., Dandong, China).

Symbol Trade Name Particle Size/µm Density/(g/cm3)

D10, V D50, V D90, V

C1 Claytone® HT 4.49 18.38 46.10 1.70
C2 CLOISITE® 30B 1.91 8.64 23.08 1.98

Table 2. Physical properties of barium sulfate (BaSO4, filler).

Filler Name Purity Oil Absorption/(g/100 g) Median Particle Diameter (D50, V)/µm Density/(g/cm3)

Sparwite® W-10 ≥97% 10.00 2.10 4.40

The composition of the polyester/TGIC powder coatings is provided in Table 3. To
investigate the combined effects of the two nanoclays, we formulated a series of coating
samples with varying nanoclay dosages ranging from 2% to 16% (all percentages are mass
fractions). The detailed formulations of these coatings are listed in Table 4. The filler was
intentionally designed to constitute 15% of the remaining components in the coatings.

Table 3. Composition of polyester/TGIC powder coatings with filler (PB).

Component Composition Content/wt.%

Resin Carboxylated polyester 90.30
Curing Agent TGIC 6.80

Flow and Leveling Agent Polyacrylate 1.60
Degassing Agent Benzoin 0.80

Pigment Carbon black 0.50

Table 4. Symbols and formulations of coatings with nanoclay (C1 or C2) and BaSO4. The total weight
for each formulation is 100 g.

Symbol Nanoclay/g Filler/g Binder/g

Control-PB 0.00 15.00 85.00
C1–02%-PB 2.00 14.70 83.30
C1–04%-PB 4.00 14.40 81.60
C1–06%-PB 6.00 14.10 79.90
C1–08%-PB 8.00 13.80 78.20
C1–16%-PB 16.00 12.60 71.40
C2–02%-PB 2.00 14.70 83.30
C2–04%-PB 4.00 14.40 81.60
C2–06%-PB 6.00 14.10 79.90
C2–08%-PB 8.00 13.80 78.20
C2–16%-PB 16.00 12.60 71.40

2.2. Preparation of Powder Coating Panels

The manufacturing involved thorough pre-mixing and subsequent extrusion of all raw
materials specified in the formulations. This process was carried out with a laboratory-scale
extruder for powder coating (model SLJ-10, Donghui Powder Coating Equipment Co.,
Yantai, China). The temperature was kept at 80, 90, and 100 ◦C for the infeed, plastification,
and homogenization zones. The screw feeder, twin-screw, and the rolling chiller were
operated at a rotation speed of 10, 300 and 10 rpm, respectively. The resulting extrudates
underwent a cooling process before being subjected to crushing, thereby producing chips
that were subsequently pulverized. This pulverized material was sieved, yielding coating
powders of about 35 µm median particle size (D50, V).
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The obtained coating powders were then sprayed onto standardized phosphated
steel panels (76, 152 and 0.81 mm in width, length, and thickness, adhering to the ASTM
D609 Type 2 standard [23]). The spraying was conducted with an electrostatic spray-
ing gun (Gema Switzerland GmbH, St. Gallen, Switzerland) at a value of −50 kV in a
spraying booth.

A curing schedule was administered to all powder-coated panels in an oven under
200 ◦C for 15 min. This process guaranteed the complete cross-linking and subsequent
full curing of the binders. The film thickness was kept at 60 ± 5 µm, as measured with a
thickness gauge (PosiTector 6000, DeFelsko Corporation, Ogdensburg, NY, USA), according
to ASTM D7091-13 [24].

2.3. Characterization

To assess the electrochemical performances, the coated panels were subjected to open-
circuit potential (OCP), linear polarization resistance (LPR), and electrochemical impedance
spectroscopy (EIS) measurements with a Modulab XM Studio MTS ECS system (Solartron
Analytical, AMETEK Scientific Instruments, Oak Ridge, TN, USA) (version 3.4) in a 5%
NaCl solution. The LPR measurement was conducted within the range of ±10 mV based
on a stable OCP at a 10 mV/min scan rate. The slope of the potential–current (E-I) curve in
this pseudo-linear region was calculated as the Rp (polarization resistance) value. The EIS
was performed using an amplitude of 10 mV (absolute) in the 10 mHz to 100 kHz range.
The coated panel was the working electrode, a saturated calomel electrode (SCE) was the
reference, and a Pt foil was the counter electrode. These electrochemical measurements
were conducted at one-day intervals and the EIS data were fitted with ZView version 4.0 h.

The surface and cross-section morphology was characterized with a Hitachi SU3500
variable pressure scanning electron microscope (SEM, Hitachi High-Technologies Corpora-
tion, Tokyo, Japan). The confocal laser scanning microscopy (CLSM) was performed with
a Zeiss LSM800 for materials (Carl Zeiss Microscopy Deutschland GmbH, Oberkochen,
Germany). The confocal datasets were processed with ConfoMap (Digital Surf, Besançon,
France) version 7.4.8341. The salt spray tests were conducted with an MX-9204 salt fog
chamber (Associated Environmental Systems, Acton, MA, USA).

The coating surface qualities were investigated by measuring the specular gloss and
distinctness-of-image (DOI) with a Rhopoint IQ 20/60 gloss haze DOI meter (Rhopoint
Instruments Ltd., St. Leonards-on-Sea, UK). Mechanical properties, including the adhesion
by tape test, pencil hardness, and impact resistance, were measured with an Elcometer 107
cross-hatch cutter (Elcometer Limited, Manchester, UK), a BYK 5800 pencil hardness tester
(BYK-Gardner GmbH, Geretsried, Germany), and an Elcometer 1615 variable impact tester
(Elcometer Limited, Manchester, UK), respectively.

3. Results and Discussion
3.1. Morphologies and Properties

The cross-sections of the coating films with the filler are presented in Figure 1a–h. The
filler particles were uniformly dispersed into the coating binder, with minimal agglomerates
exceeding 10 µm in size. Proper dispersion of the clay particles within the binder matrices
was observed at relatively low dosages, exhibiting a defect-free surface without any visible
pores. However, the coatings failed to form a continuous film at C1 dosages of 8% and
16%, resulting in a sandpaper-like appearance. Large pores and channels up to 10 µm
(Figure 1e,f) were formed inside the coating films. Comparing the same dosage of 2%
with and without the filler, it was evident that the incorporation of the filler led to smaller
particle sizes in the nanoclay, facilitating its improved dispersion. The filler particles served
as an effective dispersing agent, breaking down nanoclay particle agglomerates.

The confocal maps (Figure 1i–k) demonstrated a noticeable increase in surface rough-
ness with higher nanoclay content, with the arithmetic average surface roughness, Sa,
increasing from 0.6 to 5.6 µm as nanoclay content increased to 4%. Moreover, after the
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immersion test, localized delamination between the steel substrate and the coating film
was observed (Figure 1l–n).
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Comparing the cross-section images of coatings with C2, as depicted in Figure 2a–f,
it becomes evident that the nanoclay of a smaller particle size (C2) exhibited inferior
dispersion within the coating matrix. At the dosage of 2%, the particles in Figure 2b (C2–
02%-PB) are even larger in size compared to Figure 1b (C1–02%-PB), given that C2 has
significantly smaller particles in its original powder form. This behavior is attributed to the
stronger inter-particle forces experienced by smaller particles, leading to a higher tendency
for agglomeration [25]. However, despite the less favorable dispersion, C2 had a less severe
impact on the surface roughness, as demonstrated in Figure 2g–i. The Sa increased from
0.6 to 5.3 µm as the nanoclay content reaching 4 wt.%. However, an excessive nanoclay C2
content of 8% also led to inferior surface quality and defects inside the film, as shown in
Figure 2j–l.
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The surface quality of the coatings was studied based on their specular gloss [26] and
distinctness-of-image (DOI) [27]. Figure 3 illustrates that both gloss and DOI declined
with nanoclay dosage. Notably, the coatings containing nanoclay C2 displayed slightly
higher surface quality than those with nanoclay C1, aligning with the observations from
the confocal mapping, indicating a less severe impact on surface roughness for coatings
with C2.
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Both series of coatings demonstrated good adhesion, achieving 4B as per ASTM D3359-
09 [28], and exhibited the same pencil hardness of 2B as per ASTM D3363-05 [29]. The
impact resistance values of the coatings, measured at 20 kg·cm, remained consistent with
those obtained from the Control-PB formula, following the ASTM D2794-93 (Reapproved
2010) standard [30]. These results indicate that the incorporation of nanoclay and filler did
not adversely influence the mechanical properties of the coatings.

Furthermore, despite adding nanoclay at a 4% dosage, the coatings maintained a desir-
able matte visual appearance, making them suitable for corrosion protection applications
in the industry.

3.2. Electrochemical Measurements
3.2.1. OCP and Rp Measurement Results

The OCP and Rp measurement results for the coatings containing the two nanoclays
and the filler are depicted in Figure 4. Both series of coatings with 2% nanoclay showed
the highest OCP (versus saturated calomel electrode (SCE)) and Rp values over time [31].
The larger particle size exhibited superior performance, as evident from the Rp values of
109 and 107 Ω·cm2. During the immersion period, instances of Rp increase were observed,
indicating the self-repairing ability of the nanoclay.

Comparing these results with the Rp values obtained for the optimal condition of C1
(4%) in the previous study (ranging between 109 and 108 Ω·cm2) [7], it is evident that the
current coatings, which include the BaSO4, provided a slightly lower level of long-term
barrier protection. However, this drawback is offset by the significant reduction in cost
(about 15%). On the other hand, the addition of BaSO4 alone cannot improve the barrier
effect, as the presence of defects within the coating film outweighed any potential benefits
in barrier properties [15].

Combining the two components (nanoclay and filler) in the coatings resulted in a
balanced system that effectively controlled both the barrier properties and the formation of
pores required to initiate nanoclay expansion.
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3.2.2. Electrical Equivalent Circuit Analysis

Electrochemical impedance spectroscopy (EIS) measurements were conducted on the
coatings C1–02%-PB and C2–02%-PB for 25 days when the sample showed about 0.03%
rusted area, a rust grade of 9-G following the ASTM D610-08 standard [32].

The EIS data can be categorized into two groups based on the appearance of diffusional
behavior observed on Day 4, as depicted in Figures 5 and 6. For Days 0–3, data fitting was
performed with an equivalent electrical circuit (EEC) illustrated in Figure 5e. Subsequently,
the EEC in Figure 6e, featuring Warburg element (Ws), was employed for data fitting from
Day 4 onwards.

Figure 7 presents the fitted values of pore resistance (Rpore) for the two coatings C1–
02%-PB, and C2–02%-PB. Comparative analysis reveals that the larger nanoclay provided
a higher level of barrier enhancement. This can be attributed to the larger contact area of
the coarser particles with the binder matrices. Additionally, the finer particles resulted in
significantly more entrapped air packets on their surfaces, leading to aggravated electrolyte
ingress [7]. Consequently, the coating with 4% nanoclay C1 exhibited the highest perfor-
mance, as evidenced by its highest Rpore, aligning with the results from the OCP and Rp
measurements.

During the immersion period, an increase in the constant phase element (CPEcoat) and
the corresponding exponential factor αcoat values of the coatings was observed for coatings
C1–02%-PB and C2–02%-PB, indicating the self-repairing function of the nanoclay [7].
Additionally, a decrease in the charge transfer resistance (Rct) value signified the delamina-
tion of the coating from the substrate [33,34], as shown in salt spray tests. The obtained
values from the data fitting are listed in Tables 5 and 6; comparing the values, the coating
with nanoclay C1 exhibited a higher performance, as shown by the lower double-layer
capacitance CPE, similar Rpore, and higher charge transfer resistance values.
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3.3. Neutral Salt Spray Results

The neutral salt spray test, conducted as per ASTM B117 [35] and D1654-08 (Reap-
proved 2016) [36], was performed on the coated panels with 0.5 mm scribes. Figure 8
presents the hours required for each coating to exceed a mean creepage (Wc) of 2 mm.
3 replicates were tested for each formulation, and the time for one of the three to reach
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the creepage (the shortest time for one of three) was recorded as the test result. The panel
images taken at the conclusion of the test are displayed in Figure 9.
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Among the coatings subjected to the same 2000 h salt spray duration, those contain-
ing the nanoclay with a larger particle size exhibited the highest level of anti-corrosive
performance, with no apparent delamination observed along the scribe.

However, for coatings with nanoclay dosages starting from 4%, blisters formed along
the scribe and adjacent coated areas [7]. This occurrence indicates a deterioration in the
coating adhesion to the substrate, attributed to the swelling and expansion of the particles
at higher contents. Such delamination became the primary cause of substrate corrosion
propagation.

Remarkably, for coatings experiencing mechanical damage through scribing, the com-
bination of a lower dosage of nanoclay and the filler demonstrated a significant synergistic
effect. To avoid the detrimental impact of high nanoclay dosage, the optimal condition
for nanoclay usage was the combination of 2% C1 with the filler. Comparatively, C2 of a
smaller particle size led to more severe coating delamination, in agreement with its lower
Rct values in Tables 5 and 6. This can be attributed to its larger number of particles and
total surface area, leading to more pronounced swelling and expansion.

The results obtained from the electrochemical measurement on the original coatings
and the neutral salt spray test on the scribed test panels correspond to different work
conditions of the coatings, which are based on the risk of mechanical damage. In scenarios
without the risk of mechanical damage, such as in storage tanks, the coatings with 4%
nanoclay C1 without the filler exhibited the strongest barrier effect during immersion.
However, for scenarios with the potential risk of mechanical damage, such as in a painted
walkway, combining 2% nanoclay C1 with the filler in the coating proved to be a better
choice. This combination showed significant synergistic effects, improving protective
performance and resistance against delamination due to the mechanical damage caused by
scribing, along with a reduction in coating cost and improved mechanical properties.

This discrepancy between the two test results agrees with our previous findings
between anti-corrosive pigments, such as zinc phosphate, and the same filler, barium
sulfate [15]. Future studies can further optimize the filler dosage to maximize the synergy
between the two.

3.4. Conclusions

This study explored the incorporation of two nanoclays of different particle sizes
into a UV-resistant polyester/TGIC powder coating system to enhance its anti-corrosive
properties. Electrochemical and neutral salt spray tests were conducted to compare the
performance of the coatings. The findings revealed that BaSO4 can effectively decrease
coating cost, but will inevitably decrease the barrier effect. A relatively low amount of 2%
nanoclay can compensate for the reduction in the barrier effect by offering self-repairing
and passive barrier effects and overcoming the delamination issues observed at higher
nanoclay dosages (4% and above). The coating panel with 2% larger nanoclay and BaSO4
showed 2 orders of magnitude higher pore resistance than the coating without nanoclay,
remaining 107 Ω·cm2 after 25 days of immersion due to improved dispersion with the
aid of the filler. As a result, this coating panel demonstrated significantly slow corrosion
expansion and reached a lifetime of 2500 h when creepage exceeded 2 mm in salt fog tests.
This study contributes to a better understanding the interaction between nanoclay and
fillers in high-performance smart anti-corrosive coatings. It offers insights for formulating
coatings suitable for different application scenarios.
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